Kapitel 23 - Exzenterbolzen mit lokaler Netzverfeinerung und Torsionsmoment

(C) 2021 Ing.Büro HTA-Software Maiwaldstraße 24 77866 Rheinau-Germany <u>www.femcad.de</u> <u>www.fem-infos.com</u>

Kapitel 23 - Exzenterbolzen mit lokaler Netzverfeinerung und Torsionsmoment

In den Exzenterbolzen aus Kapitel 3 wird eine Bohrung mit D= 50 mm eingefügt. Die Bohrung wird erzeugt indem das Tetraeder-Netz mit einer zusätzlichen Knoten-Liste eines separat erzeugten Kreisringes neu vernetzt wird.

Mit dieser neuen Vernetzungsfunktion von MEANS V12 können hohe Spannungsbereiche gezielt feiner vernetzt oder neue Elementgruppen erzeugt werden.

1.1 Exaktes Ergebnis

Die Axialspannung kann durch die Axialkraft und dem Kreisringquerschnitt und die Torsionsspannung durch das Torsionsmoment und dem polaren Widerstandsmoment exakt berechnet werden.

Axialspannung = Axialkraft / Kreisringquerschnitt

= 1 000 000 N * 4 / 3.14159 * (60² - 50²) mm² = 1157.49 N/mm²

Torsionsspannung = Torsionsmoment / polares Widerstandsmoment

= 111.93 N/mm²

1.2 Exzenterbolzen generieren

Wählen "Neu" und "3D-Netzgenerator MEANS V12" und generieren mit der STEP-Datei "Exzenterbolzen.step" aus Kapitel 3 und der Netzdichte "1.6" zuerst ein FEM-Netz aus 2454 Tetraedern. Dannach wird mit Menü "Verfeinerung" die neue Dialogbox für die Lokale Netzverfeinerung aufgerufen um mit dem Menü "FEM-Netz alles 8x feiner" ein 8x feineres FEM-Netz mit 19632 Tetraeder zu erzeugen. Die FEM-Datei "tet4x8.fem" sich merken da sie später wieder benötigt wird.

Netze mit TETGEN ×	🛃 Lokale Verfeinerungen - 🗆 🗙
Netzgenerierung	Einstellungen Lokale Verfeinerung Jacobi-Test Infos
1.6 ~	Cabritt 1. Kastanliste das alduelles FEM Nata antellas
Elemente: 19632 Knoten: 4337	Schille 1. Moleeniiste des aktuellen reim-welz erstellen
🗹 mit Netz	Neue Knotenpunkte erzeugen
Einstellungen	Schritt 2: Knotenbereich definieren Schritt 3: Neue Knotenpunkte erzeugen Mittelpunkte der TET-Flächen
Flächenmodell	Schritt 4: Vernetzen mit neuen Knoten
Verfeinerung	Eine bereits erstellte Knotenliste einfügen
Minimal Netze	Neue Knoten-Liste erzeugen Knoten aus FEM-File einfügen Knoten aus .Node File einfügen
Neu	Vemetzen mit Knotenbereich von Knoten: bis Knoten:
Cancel	
	Repair- und Refine Tools aus MEANS V11 FEM-Netz aus Ele Bila einfüren EEM-Netz alles 9X feiner Verfeinenung aus V11
Y	z
V	
X	

1.3 Kreisring erzeugen

2D-Kreisring erzeugen

Wählen Sie das Register "Datei" und "Neu" sowie "Neues FEM-Projekt mit dem Menü Balken-Linien-Modus" um ein 2D-Kreisring mit Ra = 30 mm und Ri = 25 mm zu erzeugen

🖳 Neues Projekt			\times						
O 3D-Netzgenerator MEANS V1:	2 (TETGE	N)							
3D-Netzgenerator MEANS V11 (NETGEN)									
Neues FEM-Projekt mit Balken	-Linien-Ma	odus erste	ellen						
Neues FEM-Projekt mit Behälter-Netzgenerator									
	ger-ivel.2g	enerator							
O Neues FEM-Projekt mit Schrau	iben-Netz	generator							
NEUES PROJE	кт								

3D-Kreisring erzeugen

Wählen Sie im rechten Seitenmenü "2D-Netzgenerator" und generieren mit einer Netzdichte in X- und Y-Richtung von "50" und der Option "3D-Modell extrudieren" ein 3D-Pentaeder-Modell.

🔜 2D-Netzgenerator	-	×
von Elementgruppe: 1 bis Elementgruppe: 1		
Elementtyp: TRI3S ~		
Netzdichte: 50 V		
Fangradius: 5E-06		
QUAD-Vierecksnetz erzeugen 3D-Modell extrudieren		
Knoten in Z-Richtung = 80 Z-Objekthöhe = 240		
Knoten prüfen Netzverfeineru	ng	
Cancel Help FEM-NETZE GENERI	EREN	

Das neue FEM-Modell mit einer Objekthöhe von "240" mm und einer Z-Netzdichte von "80" besteht aus 36972 PEN6-Elementen und 25920 Knotenpunkten und ist unter dem Namen "extrude.fem" abgespeichert.

1.4 FEM-Netz mit einer zusätzlicher Knoten-Liste generieren

Laden Sie den verfeinerten Exzenterbolzen "tet4x8.fem" wieder ein und wählen mit Register "Netzgenerierung" und "Lokale Netzverfeinerung" die Dialogbox für Lokale Netzverfeinerung.

Wählen Sie hier "Schritt 1: Knotenliste des aktuellen FEM-Netz erstellen" um die Knoten-Liste des Exzenterbolzens für den Netzgenerator zu sichern.

😽 FEM-System MEANS V12 -	Strukturdatei C:\projekte\exzenterbolzen\neu\tet4x8.fem
Datei Ansicht	Netzgenerierung FEM-Projekt bearbeiten FEM-Analyse Ergebnisauswertung Training
3D-Netzgenera Lokale Netzver 3D-Netzgenerator mit STEP	atoren feinerung , STL, IGES 🕫 2D-Netzgenerator 🕫 Netze manipulieren 🕞 Netze prüfen <table-cell> Netze prüfen 🖓 Netzgeneratoren 🕞</table-cell>
Netze mit TETGEN 🛛 🗴	
	💀 Lokale Verfeinerungen - 🗆 🗙
Netzgenerierung moderate V	Einstellungen Lokale Verfeinerung Jacobi-Test Infos
Elemente: 0 Knoten: 0	Schritt 1: Knotenliste des aktuellen FEM-Netz erstellen
i mit Netz	Neue Knotenpunkte erzeugen
Einstellungen	Schritt 2: Knotenbereich definieren Schritt 3: Neue Knotenpunkte erzeugen Mittelpunkte der TET-Kanten Mittelpunkte der TET-Flächen
Flächenmodell	Schritt 4: Vernetzen mit neuen Knoten
Verfeinerung	Eine bereits erstellte Knotenliste einfügen
Minimal Netze	Neue Knoten-Liste erzeugen Knoten aus FEM-File einfügen Knoten aus .Node File einfügen
Cancel	Vemetzen mit Knotenbereich von Knoten: 4338 bis Knoten: 30257
	Repair- und Refine Tools aus MEANS V11 FEM-Netz aus .Ele File einfügen FEM-Netz alles 8X feiner Verfeinerung aus V11
	Cancel OK

Anschließend wählen Sie Menü "Knoten aus FEM-File einfügen" und fügen die FEM-Datei "extrude.fem" ein, es werden nun die Knotenpunkte des Kreisringes im Rendering- oder Drahtgitter-Modell dargestellt. Außerdem werden die zusätzlichen Knoten von 4338 bis 30257 in den beiden Knoten-Feldern eingetragen die auch editiert werden können.

3D-Netzgenerierung

Wählen Sie das Menü "Vernetzen mit Knotenbereich" um das FEM-Netz des Exzenterbolzens mit dem Kreisring als zusätzliche Knoten-Liste neu zu vernetzen.

Nach etwa 10 Minuten Rechenzeit wird ein FEM-Modell mit 140 199 TET4-Elementen und 24 630 Knoten generiert und dargestellt.

C:\Program Files\FEM-System_MEANS_V12\Debug\meanstetxp.exe

```
Opening file.1.smesh.
Opening file.1.node.
Opening file.1.a.node.
Constructing Delaunay tetrahedralization.
Delaunay seconds: 1.43
Creating surface mesh.
Perturbing vertices.
Delaunizing segments.
Constraining facets.
Segment and facet seconds: 1.173
Removing unwanted tetrahedra.
Hole seconds: 0.041
Repairing mesh.
Repair seconds: 0.03
Insert additional points into mesh.
```


Die Bohrung geht nur duch den gesamten Exzenterbolzen wenn der Kreisring genau 240 mm lang ist. Kreisring-Knoten die außerhalb des Exzenterbolzens liegen werden nicht generiert.

1.5 Kreisförmige Elementgruppe 2 erzeugen

Wählen Sie das Register "FEM-Projekt bearbeiten" und "Elementgruppen" und das Menü "Elementgruppen erzeugen". In der nächsten Dialogbox die Option "Elementgruppe mit Kreisbogen erzeugen" und den Button "Erzeuge Elementgruppe" wählen um mit einem Außenradius von "25.5" und einer sehr hohen Rasterung von "1500" die kreisförmige Elementgruppe 2 zu erzeugen.

FEM-	-System N	IEANS V12 - St	ukturdatei C:\projekte\exzenterbolzen\neu\netz.fem	
C	Datei	Ansicht	Netzgenerierung FEM-Projekt bearbeiten FEM-Analyse Ergebnisauswer	tung Training
Eelast	ungen D	1. Knotenbela ☑ Belastungen	stung → Aarstellen Randbedingungen ✓ Infozeile	en Materialdaten Editor 6. Belastungen
EG=	1		፼ EG = 1	
10 🔽	N	EG= 1	Elementgruppen erzeugen	🖷 Rechteck oder Kreisbo — 🗆 🗙
10 💟	4	EG=2	Elementgruppe erzeugen: 2	reisbogen Rechteck
10 💟	4	EG=3	O EG mit aufgespannten Rechteck und einer Tiefe erzeugen	Neu REDO
0	4	EG=4	O EG mit allen angezeigten Knoten erzeugen	Kreisbogen-Mittelpunkt:
0	4	EG=5	O Elementgruppe aus mehreren Rlächen erzeugen	X-Koordinate: 0.00
0 🗹	N	EG=6	Elementgruppe mit Koordinatenbereich erzeugen	Y-Koordinate: 0.00
0	N	EG=7	Elementgruppe mit Kreisbogen erzeugen	Z-Koordinate: 0.00
Fürneue	Farbe auf Fa	arbrahmen klicken	O Z-Tiefe O Y-Tiefe	Aussen-Radius: 25.5
☑ als Drahtgitter sichtbar		er sichtbar	von: [-100000 bis: 100000	Rastening: 1500
Refresh Hidden-Line		den-Line		Anfangswinkel: 0
Grupp	en 1-7	~	Elementari innen ändem	Endwinkel: 360
Neue	Elementgrup	open erzeugen	Anzahl Elementgruppen ändem: 1	
			Elementgruppe ändem von:	Kreisbogen erzeugen
			Anzahl Elemente ändem: 139086	Ž
				Cancel
			Cancel	
				XNXNAT

1.6 Bohrung simulieren

Elementgruppe 1 ist bereits für "Stahl" voreingestellt, um die Bohrung zu simulieren werden die Materialdaten der Elementgruppe 2 einfach auf einen sehr kleinen Wert von "0.1" gesetzt. Wählen Sie dazu das Register "FEM-Projekt bearbeiten" und "Materialdaten".

🖶 M	laterialdaten		_		\times	🖳 N	laterialdaten		_		I X
	Bezeichnung	Materialwerte					Bezeichnung	Materialwerte			
•	E-Modul	210000				•	E-Modul	.1			
	Poisson-Zahl	.3					Poisson-Zahl	.1			
	Dichte	7.8E-06					Dichte	0			
	Waermekoeffizient	1.2E-05					Waennekoeffizient	0			
Eler	mentgruppe: 1	Elementtyp: TET4	4	c 📃	>	Ele	mentgruppe: 2	Elementtyp: TET	4	<	>
	 Isotrop 	 Anisotro 	op				 Isotrop 	🔿 Anisotr	rop		
	Material-Datenbar	nk	OK				Material-Datenbar	nk	0	К	
	Materialdaten kopie	ren					Materialdaten kopie	ren			

1.7 Elementgruppe 2 löschen

Um die Bohrung zu erzeugen muß die Elementgruppe 2 gelöscht werden. Wählen Sie Register "Netzgenerierung" und "Quad-Netze, Verfeinern, Löschen" und dann wieder "Löschen" um die die Elementgruppe 2 mit einer nachträglichen Netz-Überprüfung zu löschen.

🚼 FEM-System MEANS V12 - Strukturdatei C:\projekte\exzenterbolzen\neu\to	orsion1.fem
0 1 0 -	
Datei Ansicht Netzgenerierung FEM-Projekt bearbeite	n FEM-Analyse Ergebnisauswertung Training
3D-Netzgeneratoren Lokale Netzverfeinerung 3D-Netzgenerator mit STEP, STL, IGES 😨 2D-Netzgenerator 😨	Netze, Verfeinern, Löschen Jacobi-Determinante Netze manipulieren 🕞 Netze prüfen 🔂 Netzgeneratoren r
	🖳 Loeschung — 🗆 🗙
Vierecke Verfeinem Konverter Extrudieren Rotieren Löschen Drehen Löschung starten	 Elementgruppen löschen Elemente löschen Knotenpunkte löschen alle angezeigten Knoten löschen Löschung mit aufgespannten Rechteck und einer Tiefe erzeugen Löschung aus mehreren Flächen erzeugen Z-Tiefe Y-Tiefe X-Tiefe von: bis: Löschung

1.8 Einspannung

Mit Register "FEM-Projekt bearbeiten" und "Randbedingungen" wird die Vorderfläche des Quades in X-, Y- und Z-Richtung fest eingespannt.

i C:\projekte\exzenterbolzen\neu\torsion1.fem					
erierung FEM-Projekt bearbeiten FEM	-Analyse Ergebnisauswertung	Training			
 ► Andbedingungen Randbedingungen Flächen-N 	n darstellen Elementgruppen Modus aktiviert - Fläche= 3	Materialdaten	6. Belastungen	Temperatur	
🖳 Randbedingungen	- 0	×			
Anzahl Randbedingungen aktuell: Wet der Randbedingung: <u>1E-10</u> Freiheitsgrad speren: <u>in X-Ri</u> Selectieren Flächenmodus einzelne Knoten anklicken Koordinatenbereich definieren RB-Symbole angassen RB-Symbole ang	729 Neu chtung □ in Z-Richtung chtung ☑ Enspannung Ø Rechteck aufspannen alle angezeigten Knoten wählen alle angezeigten Surfaces wählen etem RB-Farbe:				
Cancel Editor	RBs erzeugen RBs löschen				

1.9 Eingabe der Flächenlast

Um die Flächenlast zu erzeugen blenden Sie zuerst die EG 2 aus und wählen einen neuen Hidden-Line, damit Fläche 3 für die Flächenlast mit 1 000 000 N selektiert werden. Wählen Sie "FEM-Projekt bearbeiten" und "Flächenbelastung" um die Last mit Fläche 3 zu erzeugen.

1.10 Eingabe der Torsionsbelastung

Die Torsionsbelastung ist etwas aufwendiger, da hier ein Balkenmodell zum Tetraeder-Netz erzeugt werden muß. Geben Sie im Linien-Modus mit "Neu" den Knoten 24631 (0/0/-50) ein.

Erzeugen Sie dannach mit Menü "Flächen-Randknoten" einen Knotenbereich der Fläche 3.

Jetzt die Knoten 24632 (-100 / 0 / -50) und 26633 (100 / 0 / -50) im Linien- Modus erzeugen und mit "Linien erzeugen" die beiden Linien 24631/24632 und 24 631/24633 verbinden.

Wählen Sie das Register "FEM-Projekt bearbeiten" und "Editor" um Lastfall 1 mit einer Knotenlast zu erzeugen. Im Editor mit "Anzahl Lasten pro Lastfall" eine "2" editieren und die Knoten 24632 und 24633 in Y-Richtung mit "FHG =2" und einen Belastungswert von "10000" und "-10000" eingeben.

U	Datei	Ansicht	Netzgenerien	ung FEM-Proje	ekt bearbeiten	FEM	-Analyse	Ergebnisauswertung	Training			
F Belast	► ungen	1. Knotenbe	elastung 👻 en darstellen	Randbedingungen	1. Randbed	lingung ngunge Kn	en 🔹 n darstellen oten-Modus	Elementgruppen	Materialdaten	Editor	6. Belastunge	en v
	Belastur	igen			- 0	×]					
-	Ne	gen	Knoten	EHG	Wert		1					
	1	2	24633	2	10000							
•	2	2	24632	2	-10000			Lastfall erzeugen	- 0	×		
•								Aktueller Lastfall: 1				
								Knotenlast	erzeugen			
								Linienlast	erzeugen			
								Flächenlast	erzeugen			
								Gravitation/Eigeng	gewicht erzeugen			
								Fliehkraft e	erzeugen			
Akt	ueller Last	fall: 1	<	 Anzahl Lastfä 	lle: 1			Temperaturla	ist erzeugen		_	
Anz	ahl Laster	n/pro Lastfall:	2 Lastty	/p: 1	Knotenlast			Cano	el			
	Neu	ier Lastfall erzeu	ugen	Lastfälle	überlagem							
		Lastfall löschen	1	Lastfälle addie	ren und kopieren							
		Lastfall-Faktor		Temperatu	ırlast einlesen							
	Fläc	henlast->Knotei	nlast	Freiheitsg	rade ändem							
		١										

1.11 Ergebnisauswertung

Nach der FEM-Analyse können mit Register "Ergebnisauswertung" und dem Icon-Menü die Axial- und Torsionsspannungen am Zylinder ausgewertet werden.

Lastfall 1: Axialspannung am Zylinder = 1159 N/mm² (exakt = 1157 N/mm²)

Lastfall 2: Torsionsspannungen am Zylinder = 127 N/mm² (exakt = 111 N/mm²)

